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ABSTRACT

This thesis addresses the analysis and design of controllers for dynamically inter-
acting systems. The example of a robotic manipulator which must interact with an
arbitrary passive environment is considered in detajl.

An approach to the design of interaction controllers is presented in terms of a
heirarchical set of design specifications and is contrasted with an approach to servo
design. It is shown that the emphasis on interaction creates a need for coupled stability
and interactive behavior specifications.

Methods are developed for the analysis of coupled stability and interactive behavior.
A necessary and sufficient condition for the stability of a linear, time-invariant plant
coupled to an arbitrary passive environment is derived. An alternative test for coupled
stability requiring the construction of two root loci, one representing interaction with
springs, and one representing interaction with masses, is also developed.

Experiments performed to examine the utility of these methods are described. A
variety of controllers were implemented on a two-link manipulator and a device for
measuring the endpoint impedance of the manipulator was constructed. Impedance
measurements of the closed-loop systems were made, and interaction with springs
and masses was examined. These experiments indicate that a measurement of the
impedance is an effective predictor of interactive behavior. In addition, these experi-
ments demonstrate that systems with identical servo responses can exhibit significantly
different interactive behaviors, and that contact instability can occur in the absence of
force feedback.

The concepts of a passive physical equivalent and an uncontrollable element are
introduced. These concepts are used to analyze the contact instability phenomenon
associated with force feedback, and to make recommendations for improved force con-
trol.

Finally, approaches to the design of interaction controllers are presented and ana-
lyzed. The relative merits of various design methods, including “servo masking” and
the “target model referenced controller”, are discussed.
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