The Cobotic Hand Controller: Design, Control and Performance of a Novel Haptic Display

Eric L. Faulring, J. Edward Colgate, and Michael A. Peshkin

Abstract—We examine the design, control and performance of the Cobotic Hand Controller, a novel, six-degree-of-freedom, admittance controlled haptic display. A highly geared admittance architecture is often used to render high impedances with reasonable sized actuators for a haptic display. The Cobotic Hand Controller is an extremely faithful realization of an admittance display, since it is capable of obtaining an infinite gear ratio and can render infinite impedances (up to its own structural stiffness). The incorporation of continuously variable transmissions utilizing hardened steel elements in dry-friction rolling contact provide the Cobotic Hand Controller with high bandwidth, low power requirements, and an extremely wide stable dynamic range. Here we describe an admittance based control algorithm for powered cobs, a novel solution to the actuation redundancy of this device, and a heuristic to avoid slip in the transmissions. We measure the performance of the Cobotic Hand Controller in terms of dynamic range.

Index Terms—haptics, admittance display, cobs, continuously variable transmission, traction drive

I. INTRODUCTION

An increasing number of virtual environment and teleoperation tasks demand high fidelity haptic interfaces. These include interaction with computer aided design models, flight simulators, telerobotic surgery, micro/nano-manipulation, underwater salvage, as well as telerobotic maintenance and decontamination and decommissioning of chemical and nuclear facilities. The execution of these tasks by a remote operator is affected by his/her level of telepresence and the transparency of the master-slave relationship [1]. This illusion of presence is enhanced by audio, visual and haptic cues. While visual cues are certainly mandatory, and audio cues beneficial at times, haptic cues can significantly improve the flow of information from the environment to the operator for many tasks requiring dexterity. Haptic cues are impedances; relationships between motion and force that an operator encounters when interacting with a display. It is desired that the user perceive a high dynamic range including rigid constraints and unimpeded free motion. This paper introduces a novel display that improves transparency and presence by extending the range of cues (dynamic range) that can be rendered.

The specific application for the development of the master hand controller introduced here is the teleoperation of the Dual Arm Work Platform (DAWP) at Argonne National Laboratory [2], [3]. One of the key improvements the Cobotic Hand Controller can provide to DAWP operation is the implementation of virtual surfaces, or virtual constraints on motion, as suggested by [4], [5], [6], [7]. Such constraints can vastly simplify execution of a six-degree-of-freedom task in a teleoperation setting. While constraints can be implemented at the slave side in the existing system, an active master allows for the reproduction of these constraints at the master and may reduce operator fatigue while increasing efficiency by eliminating unneeded motions in six-space. Thus, if the operator is using a saw and constrains the motion of the saw to the plane of the blade at the slave, he/she feels these same constraints at the master. Rendering these constraints at the master also avoids time delay issues stemming from communication latencies.

Existing haptic displays consist of admittance and impedance devices. Admittance displays are highly geared and therefore non-backdrivable while impedance displays have low inertia and are highly backdrivable. Admittance displays are reviewed in [8], [9], [10]. The Haptic Master [11] and Steady Hand Robot [7] are notable implementations of the admittance paradigm. Although well-engineered admittance devices may have a higher dynamic range than impedance displays, they are rare due to cost and complexity. The required multi-degree-of-freedom force sensors, additional gears and bearings, and tight machining tolerances lead to significant cost. Thus the successful commercial haptic displays are often impedance devices. Impedance displays include the Phantom [12], the Whole Arm Manipulator (WAM) [13], and many others [14], [15], [16], [17], [18], [19].

While today’s impedance and admittance displays may both be used to simulate a wide range of mechanical behaviors, they excel in different areas due to the nature of their control and mechanical structures. Among commercial and research devices, most serial link haptic displays have a maximum stable stiffness on the order of 1-5 N/mm (various models of the Phantom range in capability from 1 to 3.5 N/mm [20]) and most parallel haptic displays have an upper stable stiffness bound of 15-50 N/mm [14], [21]. A stiffness of 1 N/mm is generally accepted as the minimum required to convey the presence of a constraint. Greater than 24 N/mm is required to convey the presence of a “hard” or “rigid” constraint [22]. Impedance displays can have an unmasked inertia as low as 0.05 kg, while admittance displays typically have a minimum stable mass of 2.5 kg. Impedance displays are well-adapted to simulating low inertia, low damping environments, but have difficulty rendering energetically passive stiff constraints [23], [24]. On the other hand, admittance displays are well-adapted to displaying rigid constraints but struggle to simulate un-
encumbered motion. Unlike impedance displays, admittance displays must actively mask inertia and damping, which are their inherent physical behaviors due to their non-backdrivable transmissions.

A. Cobots

The word cobot is derived from collaborative and robot, meaning shared control between a human operator and a computer [25], [26]. Cobotic devices control the relative velocities of their joints by modulating continuously variable transmissions (CVTs) with small steering actuators (Figure 1). Cobotic CVTs have been developed to relate two translational velocities, two rotational velocities, or a rotational velocity to a translational velocity, and have been used in many prototype devices [27], [28], [29], [30]. The velocity ratios enforced by constraints in the transmissions cause cobots to have only a single mechanical instantaneous motion freedom, regardless of the dimension of their configuration space. The dynamics along this single instantaneous motion freedom defined by the CVTs are controlled via a single power injector in an active cobot such as the Cobotic Hand Controller, or by a human operator in the case of a passive cobot. Rolling constraints in the transmission elements, not electrical power, resist forces orthogonal to the current motion direction. The transmissions draw power from a single common element actuator as needed, potentially reducing the weight and power requirements of the overall mechanism. Using a continuously variable cobotic transmission can eliminate the need to make compromises on output flow and effort, which are inherent in choosing a fixed transmission ratio, and also allow the common element actuator to be operated at an efficient speed nearly all of the time. In addition, the cobotic architecture allows for the ability to both lock or decouple joints without any additional actuators beyond the single low-power steering actuator for each CVT.

B. Summary of paper

In Section II we provide a detailed description of mechanical design of the Cobotic Hand Controller recently introduced by [31], [32]. In Section III we review the computation of forward and inverse kinematics for the device. In Section IV we review the workspace, mechanism stiffness, force limits and the backdrivability of the device. In Section V, we summarize our virtual environment admittance control algorithm and outline the overall control strategy and low level controllers. A heuristic is developed that limits slip in the CVTs and therefore protects against instability of the display. In Section VI we derive a novel methodology for dealing with the actuation redundancy of the display. In Section VII we analyze the acceleration ability of the display. In Section VIII we analyze the dynamic range of the Cobotic Hand Controller. Finally in Section IX we provide conclusions and suggestions for future investigations.

II. DESIGN

A. Geometry

The design of the six-degree-of-freedom Cobotic Hand Controller, shown in Figure 2, utilizes the kinematics of a parallel platform introduced by Merlet [33], [34]. The parallel platform portion of the geometry (i.e., everything but the cylinder and wheels) has also been used in an ophthalmic surgery robot developed by [35] and, in a slightly modified form, in an industrial dextrous assembly robot called the Paradox [36]. The proximal links are coupled by three-degree-of-freedom universal joints to the distal links, and these in turn are coupled via two-degree-of-freedom universal joints to an end-effector platform. Here a multi-axis force sensor is placed to measure the user’s intent. Our addition to Merlet’s kinematics is to relate the six linear actuators to a central power cylinder through non-holonomic rolling constraints. An alternative CVT design for a six-degree-of-freedom cobot was proposed by [37].

Linear actuation of the proximal links is achieved by a rotational-to-linear continuously variable transmission (CVT), namely a steered wheel. The steering angle of each wheel relates the linear velocity, \(l_i \), of each proximal link to the rotational velocity, \(\omega \), of the power cylinder. A linearly moving carriage, shown in Figure 3, couples each CVT wheel to each proximal link. When the wheels are steered such that their rolling axis is parallel to the power cylinder’s \((\phi_i = 0) \), a ratio \(l_i = -R\omega \tan \phi_i = 0 \) is set. If the wheels are steered in either direction from \(\phi_i = 0 \), ratios between \(\pm \infty \) can be achieved. In practice, wheel slip limits this range. It is also evident that turning all six wheels to \(\phi_i = 0 \) locks the six actuators, and turning them to \(\phi_i = \pi/2 \) completely decouples the actuators from the cylinder’s velocity, although the cylinder would then be unable to turn.

The cobot was designed for some degree of kinematic flexibility. Thus the offset clamps (Figure 2) adjoining proximal and distal links have two attachment points for the distal links and can be rotated about the proximal links. Rotating them inward yields a larger rotational workspace but reduced stiffness. The mounting positions of the distal universal joints to the end-effector plate are adjustable as well. In addition, the length of the distal links is easily changed as they are made of threaded rod that inserts directly into the universal joints.

The universal joints themselves are unusual in that they exhibit continuous rotation even when coupling shafts that are almost perpendicular (87.5 degrees). This severe operation
Fig. 2. The kinematics of a Merlet-Cobotic parallel platform (not to scale - the proximal links and cylinder have been shrunk by about 40 percent in length relative to the distal links). This design consists of six linear actuators arrayed around a central power cylinder. Later figures detail the structure connecting the wheels to the proximal links.

angle would be detrimental if they needed to transmit power rotationally, but here they need only to transmit power through translation of the universal joint as they maintain a kinematic constraint. They were designed and built specifically for the Cobotic Hand Controller and each contains four preloaded radial bearings.

As shown in Figure 4, the two ends of the device are capped by endplates which sit in v-groove rollers. Thus the whole device can be rotated and fixed by a locking pin at increments of 30 degrees for maintenance or kinematic purposes. Each of the carriages can be removed independently if the proximal-distal offset clamp is detached. Wire management guides all wiring (not shown) through the rear endplate. The whole cobot can be turned upright and operated with the cylinder oriented vertically, although significant power (and a fraction of the preload at the wheel) would be consumed to move the joints against gravity.

B. Joint assemblies

The parallel nature of the Merlet-Cobotic mechanism allows for six identical actuator assemblies. As shown in Figure 2, there are six equally spaced proximal links and actuator assemblies. These assemblies, depicted in Figure 5 and detailed in Figures 6-10, are bolted to a central core, detailed in Figure 11.

All structural components are machined from aluminum with the exception of the proximal links. These are 15.875 mm diameter ceramic tubes chosen for their high strength to weight and stiffness to volume ratios. The ceramic tubes at their current length provide 24 cm of workspace along the axis of the cylinder. The upper limit of the workspace is limited by the cylinder’s 25 cm length. The moving portion of each joint assembly (depicted in Figure 6) has mass $m_l = 0.9$ kg.

A conductive-plastic linear potentiometer (see Figure 7) was chosen as a continuous linear sensor over numerous digital incremental options due to its lightweight untethered wiper, as well as for the ability to perform analog differentiation of its output in order to obtain a high resolution velocity signal.
Although the circuitry and code were developed to interpret this analog differentiated signal, the signal-to-noise ratio is such that the finite-differentiated and digitally filtered position signal yields an equally good velocity signal.

Figure 8 details the linear guideway chosen. It was designed to minimize the friction in and construction tolerances required for the linear guideway. In addition, we desired to locate the CVT wheel, which is preloaded against the power cylinder, between two guide rods in order to avoid requiring the guideway to resist significant moments. The resulting design utilizes two guide rods and five rollers, four of which are aligned against one guide rod, the fifth against a second guide rod. The sixth point of contact, which constrains the carriage to one or zero degrees of freedom depending on the steering angle, is provided by the cobotic steering wheel.

There are several key advantages of this non-overconstrained design over commercially available alternatives. Notably, the guideway does not over-prescribe the linear motion of the carriage, and operates without binding (locking up) even if the two guide rods are skew or are bent by significant loading. The guideway is preloaded by the same mechanism that loads the CVT wheel against the power cylinder. As the preload at the wheel is increased, so does the ability of the linear guideway to resist wrenches on the proximal link without shifting. This effect coincides with the desire for the wheel to provide higher constraint forces. An adjustable preload is provided by placing approximately 25 Belleville disc springs (see Figure 10), in some combination of parallel or series, between the yoke of the CVT wheel and its housing. The spring-constant for this set of Bellevilles needs to be such that as the carriage travels from one end of the cylinder to another, minor changes in the length of the spring (±50 µm) do not significantly alter the preload, since the preload will affect the dynamics of steering, linear motion control and cylinder control. Also mounted on the carriage is an optical encoder for measuring steering angle, a steering motor coupled via gears (2.33:1) to the steering bell and a wiper for a linear potentiometer (see Figure 9).

Designing wheels for use in cobots has always been problematic. Conflicting design goals when choosing wheel materials has limited wheel performance. It is desired that the wheels provide a high transverse frictional force with minimal preload, yet it is also desired that the wheels have low steering friction in order to allow for smaller steering actuators and higher bandwidth of control. It is also desired that the wheels have low rolling friction and little dissipation in order to provide for backdrivability and a reduced power requirement for powered cobots. The wheel should not have any compliance transverse to the rolling direction if a rigid transmission is desired. Finally the wheel material should incur minimal wear due to steering or rolling.

Previous cobots have typically utilized polyurethane.
Fig. 9. Carriage features. Each carriage relates a CVT wheel to a proximal link. It houses the steering motor which drives the steering bell assembly via a single-stage gear pair. An eccentric bushing allows fine adjustment of the inter-gear spacing.

RollerbladeTM wheels (75 mm in diameter) in order to obtain the necessary transverse coefficient of friction. For the Cobotic Hand Controller we chose to move to harder wheel materials to increase the stiffness and bandwidth of the device, and to reduce rolling losses. Also, the linear guideways required the existence of a high preload (unnecessary for the high friction polyurethane wheels). With these two constraints in mind, steel wheels (18 mm diameter) were chosen to run against a steel power cylinder even though the coefficient of friction of steel on steel is an order of magnitude less than that of polyurethane on steel. Depending on performance needs (transverse friction or resisting of wrenches on the guideway), more or less preload can be utilized. Currently the preload P is set to around 250 N. The CVT wheels start out with a spherical profile and are the centers of plain spherical bearings with a hardness of Rockwell C 58. After a few hours of use, the wheels, originally with a black-oxide coating, have a shiny flat strip 880 μm across. Even after 12 months of intermittent use in the lab, the strip is no larger than 910 μm across, which amounts to a total of 11 μm of wear off the radius of the wheel. We find the coefficient of friction, μ, for support of lateral forces between the steel wheels and steel cylinder, to be around 0.12. This is the point at which lateral creep breaks down into gross slip.

C. Power cylinder

As shown in Figure 11, the power cylinder is located between two mating blocks. The steel cylinder is 25 cm in length, 13.64 cm in diameter, and has a 6.25 mm wall thickness. The cylinder shell has been welded to its end-caps, and these to the shaft (total inertia of 0.0286 kgm2). The cylinder/end-caps/shaft were then hardened to Rockwell C 59.8 and cylindrically ground between centers to a 12 μm finish. In 12 months of use, the cylinder has not shown evidence of wear.

Each of the six linear actuator assemblies bolt to the mating blocks. Also connected to the blocks are the power motor and a high resolution encoder. The motor is connected via a rigid coupling to the cylinder. A flexible coupling was originally present, but later removed to avoid unwanted resonances. A large 1200 watt motor was chosen as it was readily available in the lab and had sufficient torque to operate without gearing. The original goal of the large motor was to mitigate backlash, thus allowing smooth operation including reversal of direction, and to allow backdrivability if the system was ever operated passively. Ultimately, control algorithms were never implemented to take advantage of this feature, and preload and speed limitations have only allowed us to draw about 60 watts of mechanical power from the cylinder motor, five percent of its capacity. Assuming we had a 70 percent efficient gear-train between a much smaller motor and the cylinder, a motor capable of peaking at 86 watts would have sufficed to drive the cylinder.

D. Electronics and Software

Table I summarizes the specifications of the sensors and actuators. All motors are brushless DC operated in torque (current) mode. The linear position and force are recorded via
1) Inverse kinematics: Inverse kinematics are deduced by relating an end point position, \(x \), in task frame coordinates to the joint space extensions, \(l \). Equations for the known fixed lengths of the proximal links are employed. This is equivalent to \(l_i = \vartheta_{i+1}^{-1}(x) \). While we do not have an analytical expression for \(J(l) \), its inverse \(J^{-1}(x) = \frac{\partial \vartheta_{i^{-1}}(x)}{\partial x} \) is easily established from the expressions \(l_i = \vartheta_{i^{-1}}(x) \), and relates velocities \(\dot{l} \) and \(\dot{x} \).

\[
\dot{l} = J^{-1}(x) \dot{x}, \quad J^{-1}(x) = \frac{\partial \vartheta_{i^{-1}}(x)}{\partial x} \tag{3}
\]

A series of six, \(6 \times 6 \) Hessian matrices \(H_{i,jk}^{-1}(x), \ i = 1 \ldots 6 \), can also be established that expose individual joint accelerations \(\ddot{l}_i \) from general task space accelerations \(\ddot{x} \).

\[
H_{i,jk}^{-1}(x) = \frac{\partial^2 \vartheta_{i^{-1}}(x)}{\partial x_j \partial x_k} \tag{4}
\]

\[
\ddot{l}_i = \sum_{j=1}^{6} J_{ij}^{-1}(x) \ddot{x}_j + \sum_{j=1}^{6} \sum_{k=1}^{6} H_{i,jk}^{-1}(x) \ddot{x}_k \ddot{x}_j
\]

2) Forward kinematics: For the general case of a six-degree-of-freedom parallel manipulator, if no pairings (intersections of axes of universal joints) exist at the platform or base, a closed form analytical solution is not available for the forward kinematics. In fact, twelve solutions are possible for task space coordinates for a given set of joint coordinates without using any heuristics about collisions or range of motion. In practice, a Newton-Raphson iterative scheme can be used to compute the task space coordinates, \(x \), given measured joint coordinates, \(l \), and an initial estimate for the task space coordinates, \(\dot{x}_0 \). However, it will become apparent that knowledge of the actual task space coordinates is unnecessary and the Newton-Raphson scheme is not needed. The Cobot Hand Controller tracks a desired trajectory in task space and we map this desired position, velocity and acceleration to joint space. This is done by utilizing a Jacobian and Hessian computed from the desired task space location. Then our feedback control is implemented in joint space. Thus we do not need to map the actual joint space location to task space via a Newton-Raphson scheme.

\[
\ddot{l}_i = -R \tan(\dot{\phi}_i). \tag{5}
\]

Table I

<table>
<thead>
<tr>
<th>Sensor/CVl</th>
<th>Resolution</th>
<th>Angular</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Cyl</td>
<td>160,000 c/min</td>
<td>NA</td>
<td>2W</td>
</tr>
<tr>
<td>CVT Encoder</td>
<td>80,000 c/min</td>
<td>NA</td>
<td>5W</td>
</tr>
<tr>
<td>Linear Pot</td>
<td>16 bit ADC (5mN)</td>
<td>1/2000</td>
<td>300 mNm</td>
</tr>
<tr>
<td>Force-Torque</td>
<td>16 bit ADC (2.5 mN)</td>
<td>1/4000 (±2.5 N)</td>
<td>±40 N</td>
</tr>
</tbody>
</table>

This oversized motor was chosen as it was readily available and eliminated the need for gearing and the associated backlash and nonbackdrivability. Ultimately control modes never took advantage of these features, and only 60 mechanical Watts have ever been asked of the cylinder motor.

The Cobot Hand Controller has two discrete sets of kinematics, the first general to robotic devices and the second specific to cobots. The first set of kinematics transforms between the \(SE(3) \) rigid body motion of the end-effector (task space) and the \(R^6 \) straight-line motion of the six proximal links (joint space). The second set of kinematics transforms between joint space and steering space, as a function of cylinder speed.

III. Kinematics

A. Joint-to-task kinematics

Let us define as the joint-to-task forward kinematics of the parallel platform portion of the Cobot Hand Controller as the functions, \(\vartheta(l) \), that take us from joint space coordinates, \(l \), to task space coordinates, \(x \).

\[
x = \vartheta(l), \tag{1}
\]

of the manipulandum (end-effector). The Jacobian, \(J \), relates motion in joint space, \(\dot{l} \), to motion in task space, \(\dot{x} \).

\[
\dot{x} = J(l) \dot{l}, \quad J(l) = \frac{\partial \vartheta(l)}{\partial l} \tag{2}
\]

The manipulandum coordinates are given by three translational coordinates \((x_1, x_2, x_3) \) and three Euler angles \((x_4, x_5, x_6) \). We have chosen an Euler angle set such that all singularities are outside of the workspace for our specific manipulandum. Euler angles allow us to work in generalized coordinates rather than with the special orthogonal group \(SO(3) \).

B. Steering-to-joint kinematics

Let us define as the steering-to-joint forward kinematics of the continuously variable transmission portion of the Cobot Hand Controller as the functions that take us from steering angle, \(\dot{\phi}_i \), and cylinder speed, \(\omega \), to joint space velocity, \(\dot{l}_i \).

1) Forward kinematics: The input and output flows for each rotational-to-linear transmission are related via

\[
\frac{\dot{l}_i}{\omega} = -R \tan(\dot{\phi}_i). \tag{5}
\]

Here we have neglected flow losses due to elastic creep in the transmission which we model in [38] and [39].
2) Inverse kinematics: During operation of the display, we seek to control joint motion, and thus the appropriate steering velocities are computed given the commanded joint accelerations. We differentiate Equation 5 and obtain
\[\dot{\phi}_i = -\frac{l_i + R\omega \tan(\phi)}{R\omega \sec^2 \phi} \tag{6} \]

IV. CHARACTERIZATION

In this section we describe the translational and rotational workspace, the mechanism stiffness and resonant modes and the output force limitations due to finite preloads. We also provide a description of the backdrivability of our current implementation of the display.

A. Workspace analysis

Situations that limit the workspace of the Cobotic Hand Controller are distal-joint to distal-link collisions, distal-link to platform singularities (occurring when the link lies parallel to the platform), distal-link to proximal link singularities (occurring when the links are orthogonal), proximal link stroke range, and universal joint operation range. These limits are from a collision and singularity standpoint only, and do not take into account manipulability or stiffness. Projections are needed in order to portray the six-dimensional workspace in two or three dimensional plots. We follow [40] and [41] which provide workspace analyses of the Paradex manipulator, a device with similar kinematics to the Cobotic Hand Controller. In Figure 12 we show the translational workspace of the Cobotic Hand Controller provided no rotations are permitted. In Figure 13 we show the rotational workspace of the Cobotic Hand Controller provided no translations are permitted.

B. Mechanism stiffness

Structural stiffness of the Cobotic Hand Controller is high for a haptic display. Stiffness is approximately 400 N/mm throughout the workspace along the cylinder’s axis. Structural stiffness orthogonal to the cylinder axis ranges from 50 N/mm in the center of the workspace to 20 N/mm away from the cylinder’s axis and rotated at extreme angles. The stiffness goes to zero in one or more degrees of freedom when the Jacobian becomes singular (i.e., a distal link is parallel to the end-effector platform or a distal link is perpendicular to its proximal link). These measurements were made by loading the platform with a spring-scale and measuring deflections with a dial indicator.

We also predict the potential bandwidth of the Cobotic Hand Controller by examining the resonant modes of its lengthy mechanical linkages. Assuming a 0.5 Kg end-effector is coupled to a beam with the previous stiffness measurements, the 400 N/mm stiffness along the cylinder’s axis yields a 142 Hz mode. A 0.5 Kg end-effector coupled to a 50 N/mm spring yields a 50 Hz mode. Impact excitation experiments confirm these estimates. The Cobotic Hand Controller’s first resonant mode orthogonal to the cylinder axis is around 60 Hz, followed by additional content at 120-150 Hz and 300 Hz. The 60 Hz mode is not present along the cylinder axis, although 120-150 Hz and 300 Hz content is present.

C. Limits due to preload

An analysis of the forces at the contact patch of the wheel is critical for determining the performance limits of the Cobotic Hand Controller. The input and output efforts of the rotational-to-linear transmission are related by
\[\frac{f_{w,i}}{\tau_c} = \frac{1}{R \tan(\phi_i)} \tag{7} \]
and are diagrammed in Figure 14. $f_{w,i}$ is the net force applied by the cylinder on the wheel in the joint direction. τ_c is the cylinder torque acting on the wheel. Here we have neglected the effort losses due to rolling friction in the transmission and the CVT wheel axle bearings which we model in [38] and [39]. The output force of the joint at the wheel,

$$f_w = m_l l + c_{d,i} P \sec(\dot{l}) - f_i,$$

is composed of the inertial force of the joint, $m_l l$, the joint friction force, $c_{d,i} P \sec(\dot{l})$, and the net output force of the joint, f_i (the operator applied force). $c_{d,i}$ is the linear guideway dynamic coefficient of Coulomb friction. For preload force P set to 250 N, joint friction $c_{d,i} P \sec(\dot{l})$ is 0.84 N. The joint masses m_l are 0.9 kg.

Forces in the longitudinal (rolling direction) of the wheel are essentially zero, unless the wheel is accelerating, or experiencing rolling friction. The net lateral force, $f_w \sec(\phi)$, is of primary concern. Adequate lateral friction force, μP, must be present so that

$$\mu P \geq f_w \sec(\phi).$$

When this is satisfied, adequate friction force is available to accelerate the linear carriage, to combat joint friction and to apply the net force, f_i, to an operator. With all transmissions steered to $\phi = 0$, thus attaining their maximum available lateral friction forces $\mu P/\sec(\phi) = 30$ N, the combined six joints of the Cobotic Hand Controller can sustain task space loads of ≥ 50 N without the expense of any electrical power.

D. Backdrivability

Here we examine first the inertial forces and then the friction forces that a user feels when attempting to backdrive a passively operated Cobotic Hand Controller.

1) **Apparent inertia**: Due to the rolling constraints in the transmissions, the cobot only has a single motion freedom for a given set of steering angles, and the apparent inertia of the cobot along this single motion freedom incorporates the six joint masses as well as the cylinder inertia, in some combination depending on the transmission ratios. The lowest the apparent inertia could be is in the translational direction along the cylinder’s axis is $6m_l = 5.4$ kg, the sum of the six joint masses, plus the steering angle dependent contribution of the cylinder inertia which can be zero for $\phi = \frac{\pi}{2}$, or infinite for $\phi = 0$. Apparent rotational inertias at the end-effector are on the order of 0.005 kgm2 or greater. The rendering of lower translational or rotational inertias requires a powered cobot to mask the apparent inertia.

2) **Friction**: In order to backdrive the Cobotic Hand Controller, an operator has to overcome joint guideway friction, rolling friction at the wheel-cylinder interface and friction in the wheel and cylinder bearings. The joint frame force due to guideway friction is $c_{d,i} P \sec(\dot{l})$ for each joint. The joint frame force needed to backdrive the CVT wheels is $\tau_{w,fr} \tan(\phi)$ for each wheel, where r is the radius of a CVT wheel and $\tau_{w,fr}$ the rolling friction torque from inelastic losses at the wheel-cylinder interface and the friction in the wheel axle bearings. The joint frame force needed to backdrive the cylinder bearings is $\frac{\tau_{c,fr}}{\sin(\phi)}$. These quantities have been estimated analytically and evaluated experimentally by [38] and are $c_{d,i} P \sec(\dot{l}) = 0.84$ N, $\tau_{w,fr} = 0.001$ Nm and $\tau_{c,fr} = 0.084$ Nm. If all the wheels are steered at $\phi = \frac{\pi}{2}$ such that the cylinder does not spin, an operator would have to apply effort 5.7 N in order to backdrive the six joints. If the wheels were steered at $\phi = \frac{\pi}{4}$ an operator would have to apply 7.23 N of effort. The rendering of forces lower than these frictional forces requires a powered cobot.

V. CONTROL

When controlling a passive cobot interacting with a haptic environment, researchers have typically thought in terms of the extreme cobotic behaviors, freemode and virtual-surface mode. With regards to the powered and parallel (redundantly actuated) Cobotic Hand Controller, the delineations between freemode and virtual-surface mode are blurred, and a completely different strategy can be adopted. The strategy we use commands desired accelerations in all directions. In [38] and [42] we develop such a strategy for the general admittance controlled device. Our methodology is capable of displaying the proper dynamics for any desired inertia matrix both tangent and orthogonal to the current motion freedom. In addition, the rendering of holonomic and/or nonholonomic constraints is supported and examples are provided in [38] and [42].

In the following, we first examine a one-degree-of-freedom system, or a single joint of our display. We leave out the joint-to-task kinematics until Section V-E. The overall control scheme for this single-joint Cobotic Hand Controller is diagrammed in Figure 15. This scheme consists of a one-degree-of-freedom virtual environment or dynamics simulation that computes desired accelerations in response to measured interaction forces with the human operator. The dynamics simulation is described in [38] and [42] where we demonstrate the Cobotic Hand Controller’s ability to render high degree-of-freedom constraints. The dynamics simulation contains an integrator and, therefore, is capable of feeding forward position, velocity and acceleration commands to the cobot, which executes motion control at the joint level. The cobot plant contains a power cylinder plant and a steering plant. The cobot renders motion to the human operator, and receives a force in response. Throughout the remainder of this section, we break down Figure 15 into increasingly smaller elements and analyze them in detail.

![Fig. 14. Forces from cylinder acting on the wheel at the contact patch.](image-url)
A. Joint motion control

The joint motion control block is a feedback controller to ensure that the measured joint position \(l'_d \) tracks the reference, \(l_d \). This consists of a PID feedback controller and a feedforward component. The derivative term makes use of a joint velocity estimate \(\dot{l} = R \omega \tan(\phi') \), computed from cylinder speed and steering angle rather than by differentiating linear position.\(^2\)

The output of this controller is a desired joint acceleration, \(\dot{\phi}_d \). Even in the full six-degree-of-freedom plant, feedback on motion control is still implemented at the joint level (as opposed to operational space feedback). This makes the tuning of gains simple by rendering the tuning of disparate rotational and translational feedback gains unnecessary. A disadvantage of feedback in joint space is that the dynamic response in task space is no longer linear, after the kinematics of the universal joints and distal links. The closed loop joint motion controller has 45 degrees of phase lag at its 40 Hz bandwidth point.

B. Rotational-to-linear system

The rotational-to-linear (RTL) block (Figure 16) contains the cylinder and steering plants and controllers that make up the rotational-to-linear transmissions. The cylinder and steering plants act on the transmission plant, which in turn outputs motion \(\dot{l}_v \) in response to the joint plant’s mediation of force \(f_l \) into \(f_w \). In [38] and [39] we develop a model of the transmission plant and provide bond graphs depicting all effort and flow losses of the transmission and joint plants. The desired cylinder speed \(\omega_d \) is based on the desired total energy, \(\mathcal{H}_d \), computed from the virtual environment. This block is described in greater detail in Section VI. The linear-to-rotational (LTR) conversion in Figure 16 represents Equation 6, the method by which desired joint accelerations, \(\dot{l}_d \), are turned into desired steering velocities, \(\dot{\phi}_d \).

\(^2\)Depending on the steering angle of the transmission, this estimate of joint velocity has resolution from far superior to approximately equivalent to the velocity signal obtained from finite differentiation of the linear potentiometer \((1 - z^{-1})/(T)l'_w \). Thus, a high-resolution joint position sensor may not be necessary in order for cobots to accurately determine their velocity. However, imperfections in the transmission (elastic lateral creep causing slip angles of 0.2 degrees [38], [39]) cause a slight phase lag of the steering angle/cylinder speed estimate of joint velocity relative to the linear potentiometer version, but typically less than that induced by filtering the finite differentiated signal.

C. Steering

The steering system consists of a plant and a proportional plus integral (PI) controller with closed loop bandwidth of 100 Hz for steering angular velocity, \(\dot{\phi} \). Per Equation 6 it is necessary to control \(\dot{\phi} \) to regulate joint acceleration, \(\dot{l} \). However, depending on operating conditions, if \(\dot{\phi} \) is too large, the transmission may slip. Thus we require that Equation 9, \(\varepsilon \mu P \geq f_w \sec(\phi) \), be satisfied. Choosing \(\varepsilon < 1 \) ensures that the friction force does not approach that required to cause gross slip. Next we recognize that the most significant component of \(f_w \) (see Equation 8) in our implementation is due to the joint inertia, not joint friction or operator force. Thus approximating \(f_w \approx m_l \dot{l} \) and assuming that \(\dot{\omega} = 0 \), combining Equations 8 and 9 along with \(\varepsilon \) yields a limit on steering velocity,

\[
\dot{\phi}_{\text{max}}(\phi) = \frac{\varepsilon \mu P}{m_l R \omega \sec^3(\phi)}. \tag{10}
\]

If the measured steering velocity exceeds this limit, the steering torque is pulled to zero. This has been implemented with \(\varepsilon = 0.5 \) and works well at preventing slip based instabilities in the transmission.

D. Cylinder

The cylinder system consists of a plant and cylinder controller containing feedback and feedforward components. The proportional plus integral (PI) feedback controller compensates for errors in cylinder velocity. The feedforward term estimates the cylinder torque required to combat friction in the device, accelerate cylinder inertia and joint masses, and oppose operator applied loads. The closed loop system has 50 Hz bandwidth.

E. Control overview with joint-to-task kinematics

Finally, in Figure 17 we add in the kinematics, \(\theta \), such that task space accelerations of the rigid body end-effector must be mapped first to desired joint motions. Subsequently, control is performed on a joint by joint basis.

VI. ENERGY-TRACKING CONTROLLER

A. Motivation

The Cobotic Hand Controller utilizes the parallel architecture shown in Figure 1 that contains a control redundancy.
It has more actuators than task-space degrees of freedom. The speed of the power cylinder is arbitrary. This control redundancy has been addressed previously [43], [44], [45]. Here we propose a new controller that varies the power cylinder speed with respect to the total kinetic plus elastic energy of the virtual environment. We show that we are able to reduce the nominal speed of the cylinder and therefore wear of components without adversely affecting haptic display.

B. Total energy function

We cannot use Equation 6 alone to solve for steering velocities in terms of desired joint accelerations, nor can we use Equation 5 alone to solve for desired steering angles. Both represent six equations in seven unknown velocities. We solve the actuation redundancy of our six-degree-of-freedom device with seven actuators by defining an additional constraint involving cylinder surface speed. We fix cylinder surface speed,

$$R\omega = \Phi(k),$$

(11)

to be a function, Φ, of a ratio k. The ratio is defined as

$$k = \frac{\mathcal{H}}{R\omega},$$

(12)

the ratio of the total energy of the virtual environment, \mathcal{H}, to cylinder surface speed, $R\omega$, and has units (kg)(m)/(sec). Our total energy,

$$\mathcal{H} = \frac{1}{2} (q^T M(q) \dot{q} + K(q_0 - q)^T(q_0 - q)), \quad \text{(13)}$$

is the sum of the virtual environment kinetic energy and any potential energy stored in virtual environment springs. Here $M(q)$ is the virtual environment inertia matrix and K the virtual environment stiffness matrix. Both kinetic and potential energy are considered such that the total does not change abruptly upon impacts with constraints. Energy is a particularly stable and objective metric for moving between the topology of virtual environment coordinates, q, to that of the cylinder, independent of the haptic display kinematics and configuration, x.

C. Desired ratio/cylinder speed trajectory

Both cylinder surface speed $R\omega$ and ratio k change with energy level \mathcal{H} due to Equations 11 and 12. We visualize this via a space with abscissa k and ordinate $R\omega$ (Figures 18 and 19). Iso-contours of energy in this space are $\mathcal{H} = R\omega k$. $R\omega = \Phi(k)$ is the path we proceed along across the level curves of \mathcal{H}. We tend to find the best performance when the trajectory $\Phi(k)$ has the form $\Phi(k) = \sigma + \left(\frac{k}{\sigma}\right)^2$, where σ is a non-zero minimum value for $R\omega$, and the quadratic term $\left(\frac{k}{\sigma}\right)^2$ limits high transmission ratios and keeps the trajectory $\Phi(k)$ orthogonal to the contours of \mathcal{H}. This avoids requiring either the cylinder or transmissions to adjust too rapidly as \mathcal{H} varies. σ, the minimum value for $R\omega$, should be sufficient to ensure that the steering actuators do not require unreasonable responses to free-motion accelerations. Thus, for a given virtual environment mass and preload force availability, we need a certain level of cylinder speed. The suggested minimum value for $R\omega$ is $\sigma = \frac{m_f}{J_{f cyl}}(f_{cyl})$ where f_{cyl} is the bandwidth of the cylinder speed controller in Hertz and $M(q)$ the inertia matrix of the simulated rigid body or mechanism in the virtual environment. $|M(q)|$ for a rigid body needs to incorporate both translational mass, m_t, and rotational inertia, r_f, via a metric such as $\frac{1}{2} \left(m_t + \frac{m_f}{r_f^2}\right)$, where r_f is a characteristic length scale (e.g., the radius of the end-effector platform).

When we have a virtual environment model running, the vectors q, \dot{q} and \ddot{q} will be computed. From these vectors we can evaluate the desired \mathcal{H} and $\dot{\mathcal{H}}$. Subsequently, we can solve

$$\mathcal{H} = kR\omega = k\Phi(k)$$

(14)

for the desired k and also the desired ω. The functions Φ may be difficult to solve for k given \mathcal{H}, but a simple binary search can efficiently find the solution of the monotonically increasing function we proposed for Φ. We can also differentiate Equation 14 to yield the rate of change of the total energy with respect to time,

$$\dot{\mathcal{H}} = k \frac{\partial(R\omega)}{\partial t} + R\omega \frac{\partial k}{\partial t} = k \frac{\partial\Phi(k)}{\partial k} \dot{k} + R\omega \dot{k}.$$

(15)

This can then be solved to yield

$$\dot{k} = \frac{\dot{\mathcal{H}}}{k \frac{\partial\Phi(k)}{\partial k} + R\omega},$$

(16)

and also desired cylinder acceleration, $\ddot{\omega}$.

Now we can evaluate the steering velocities by plugging Equation 12 into Equation 6 and solving for $\dot{\phi}$ in terms of k_d, \dot{k}_d, $\dot{\mathcal{H}}_d$ and \mathcal{H}_d (note that while we dropped the subscript d in Equations 14-16, all parameters in those equations are the product of a simulation and thus are desired quantities as indicated in Figures 15 and 16). In practice we drop the excitatory \mathcal{H}_d and \dot{k}_d terms (they tend to make the model of the system a bit too perfect and therefore “alive”). We also neglect to use ω_d for the cylinder computed-torque feedforward controller, thereby providing a bit of damping. The cylinder controller does utilize ω_d for the set-point of the cylinder velocity feedback controller.
\[k = \frac{\mathcal{H}}{(R\omega)} \]

During interaction with a mass-damper virtual environment, cylinder surface speed changes as a function of virtual environment energy, \(\mathcal{H} \), via the desired trajectory \(R\omega = \Phi(k) = 0.214 + \left(\frac{k}{0.15}\right)^2 \).

\[k = \frac{\mathcal{H}}{(R\omega)} \]

During a unilateral collision with a dissipative wall, cylinder surface speed changes as a function of virtual environment energy, \(\mathcal{H} \), via the desired trajectory \(R\omega = \Phi(k) = 0.214 + \left(\frac{k}{0.15}\right)^2 \).

D. Free motion performance experiment

We analyze the performance of the proposed energy-tracking cylinder speed controller during manipulation with an unimpeded mass-damper virtual environment. We manipulate a 2.0 kg mass in a 0.1 (N)/(m/s) damping environment. All three translations are allowed and rotation is disallowed. In Figure 18 we record the energy-tracking controller’s performance during manipulation of this mass-damper system. The system was accelerated from a state of rest to 0.04 Joules, which is 0.2 m/s for a 2.0 kg mass, and then decelerated back to rest. The cylinder speed increases and subsequently decreases in surface speed, from the nominal minimum of \(\sigma = 0.214 \) m/s to a maximum of 0.478 m/s. Deviation between the desired and actual trajectories is due to the dynamics of the cylinder and joint motion controllers.

\[k = \frac{\mathcal{H}}{(R\omega)} \]

During interaction with a mass-damper virtual environment, cylinder surface speed changes as a function of virtual environment energy, \(\mathcal{H} \), via the desired trajectory \(R\omega = \Phi(k) = 0.214 + \left(\frac{k}{0.15}\right)^2 \).

VII. UNILATERAL IMPACT (ACCELERATION) CAPABILITY

We analyze the performance of the proposed energy-tracking cylinder speed controller and maximum steering velocity heuristic during manipulation in a virtual environment containing unilateral constraints. We again manipulate a 2.0 kg mass in a 0.1 (N)/(m/s) damping environment while disallowing rotations. The environment is bounded by a unilateral constraint characterized by stiffness 10,000 N/m and damping 400 (N)/(m/s). In Figures 19 and 20 we record the energy-tracking controller’s performance during an impact with the dissipative unilateral constraint. The desired trajectory in Figure 19 is followed relatively well until the constraint is encountered. When the constraint is encountered, the cylinder is able to reduce speed much quicker than the joints are able to reduce their energy (compare the delays in subplots A and B of Figure 20). The actual trajectory in Figures 19 and 20, based on measured joint velocities and positions, stays at a much higher energy level than the near-zero energy level requested after the simulation of a dissipative impact. The actual and desired cylinder speeds have returned to \(\sigma \), but the actual energy level, \(H \), has not returned to zero as the joints are still moving. Even as the wheels steer to stop the joints, creep and slip occur since the wheels incur heavy loads decelerating the joint masses and resisting the operator applied forces. The result is performance that does not coincide with the 40 Hz motion control bandwidth of the joints.

This apparent lack of performance is analyzed in Figure 21 where the deviation between desired and actual end-effector position during the unilateral impact of Figures 19 and 20 is shown. Note that the desired trajectory penetrates the wall only about 1.0 mm while the actual penetration is 3-4 mm (Figure 21). The walls are initially soft (the 3-4 mm penetration rather than the desired 1 mm penetration) but harden quickly as
the user is pushed back to the wall, even when applying a significant load. The resulting haptic perception is of a soft wall (1 to 3 kN/m) that hardens quickly after impact (i.e. faithfully reproducing the requested 10,000 N/m at times of low acceleration). This contrasts with impedance displays that can use impulses to create the perception of a hard initial contact, and are then unable to sustain high forces [46]. This particular simulation and set of initial conditions demand a low acceleration. This contrasts with impedance displays that faithfully reproducing the requested 10,000 N/m at times of low acceleration.

The virtual environment of the system consists of a virtual spring, k_{virtual}, a virtual damper, b_{virtual}, and a virtual mass, m_{virtual}. If the actual cobot and virtual systems move to locations, x_{physical}, and y_{virtual}, the real spring, k_{physical}, generates a load, f_{sensor}, at the load cell. Similar testing protocols have been implemented by others for determining the stable impedance range of a haptic display [51], [52], [53], [54]. The simulation is oriented along the axis of the cylinder, rendering the motion of all six joints identical. The experiment was performed with the nominal cylinder speed set at 5.0 rads/s, and with the maximum steering velocity heuristic actively limiting steering torque if ϕ_{max} was to be exceeded. The test protocol required the end-effector to be brought into contact with the real spring by moving along the axis of the cylinder at 5 cm/s until a 5 N load was detected. The zero point of the virtual spring is set at this location. After a 0.25 second delay, the virtual environment simulation was started and a stability metric applied.

We tested 4 different virtual masses over a range of virtual damping and virtual stiffness. In addition, the whole experiment was performed with three different physical springs, k_{physical}. The first spring was a 1000 N/m die spring, approximately 30 cm long and 3.5 cm in diameter, which was slid onto a cylinder for support as it lay horizontally. The second spring was a 3000 N/m die spring, also 30 cm long and 3.5 cm in diameter, and again slid onto a cylinder for support as it lay horizontally. The third was a 6000 N/m piece of 12 mm thick, 40 durometer polyurethane. The stability metric and exploration algorithm are explained in greater detail in [38].

B. Results

In Figure 23 we plot the results of the Z-width exploration tests for the three physical springs examined. Depending on the impedance that the Cobotic Hand Controller is interacting with, the stable virtual impedances it can render are characterized by a top stable natural frequency between 15 and 40
that result from using a small mass also led to stable instabilities that escaped the steering velocity heuristic. The stable impedance range of the Cobotic Hand Controller is limited by steering dynamics and transmission creep/slip. Steering dynamics produce a phase lag relative to the virtual environment that tends to help filter out high frequency content from transmitting from the virtual environment to the proximal and distal links. However, creep, and, in the worst case, slip, occurs in the transmission when it attempts to accelerate/decelerate the inertia of a link. This slip causes a deviation between the reference and virtual positions, and large feedback errors are generated that require even larger steering velocities. In addition, the high frequency content of a slip occurrence will excite the structural resonances of the proximal and distal links. We believe that slip is the mechanism that ultimately limits the range of impedances that can be stably rendered.

IX. Conclusion

We have designed and built an active six-degree-of-freedom cobotic haptic display with force transmission capabilities exceeding 50 N, structural stiffness ranging from 20-400 kN/m, a motion control bandwidth of 40 Hz, and near zero power requirements for sustaining high output loads. Based on our experience with haptic interface devices, the dynamic range of this display is quite broad. Although the Cobotic Hand Controller is controlled as an admittance device, allowing motions based on the applied force, the cobot does not suffer from the high inertia, friction and backlash that normally exist in a highly geared admittance device. The crisp distinction between free and forbidden directions of motion is striking. This performance arises not from elaborate control algorithms, but from the inherent physical characteristics of the device due to the utilization of non-holonomic rolling constraints.

In order to render constraints on motion, the device controls the steering motion of transmissions rather than attempting to match an actuator torque to an operator applied effort. The result is a highly power efficient display that requires only a few watts of electrical power even while imparting high stiffness values and forces to the user. A key design choice, which enabled the display of high stiffness values and crisp constraints, was the use of steel-on-steel precision-ground bearing quality components in dry-friction rolling contact. This choice yielded transmissions with high bandwidth, near-zero rolling friction, zero backlash and near-zero compliance.

We have introduced many innovations to cobot control in our design of a control architecture for the Cobotic Hand Controller. We designed an admittance architecture for cobots based on commanding acceleration rather than curvature. We developed a novel energy-tracking cylinder speed controller that reduces wear and vibration without degrading haptic performance. We designed a maximum steering velocity heuristic to prevent transmission slip that leads to instability. We then presented results of stable dynamic range exploration with the Cobotic Hand Controller. Future cobot control improvements should strive to maximize the range of impedance by fully utilizing acceleration capability, particularly during unilateral impacts. As mentioned in Section VII, it may be useful to
pursue an event-based solution to unilateral impacts by simply playing back a steering trajectory independent of joint motion control.

We envision parallel cobots as an enabling technology for haptics and prosthetics that will allow for increases in the dynamic range of these devices while simultaneously permitting reductions in actuator size and power requirements. Use of a CVT eliminates the need to make compromises on output flow and effort, which are inherent to choosing a fixed transmission ratio. The result is mechanisms with enhanced dynamic range that extends continuously from a completely clutched state to a highly back drivable state.

ACKNOWLEDGMENT

The authors would like to thank Young Park, Tom Ewing and Hysig Kang for their contributions to this research.

REFERENCES

